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Normalized Texture Motifs and Their Application to Statistical Object Modeling

This work was performed under the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under Contract
W-7405-Eng-48.

Abstract 2. Related Work

A fundamental challenge in applying texture features to sta- 1 nere are generally two approaches to analyzing image
tistical object modeling is recognizing differently oriented t€Xture in a rotationally invariant way. The first is to ei-
spatial patterns. Rows of moored boats in remote sensedner extract rotationally invariant features [1][2][3], or make
images of harbors should be consistently labeled regardlessthem invariant through post-processing [4][5][6]. Extract-
of the orientation of the harbors, or of the boats within the INg isotropic features dismisses the issue of rotation invari-
harbors. This is not straightforward to do, however, when ance fromthe outset. The discriminating power of these fea-
using anisotropic texture features to characterize the spatial tures is limited, however, since they disregard orientation, a
patterns. We here propose an elegant solution, termazd fundamental property _of texture. Approaches thgt make the
malized texture motifsthat uses a parametric statistical features rotation invariant through post-processing are also
model to characterize the patterns regardless of their orien- Problematic. In some situations, the relative orientation be-
tation. The models are learned in an unsupervised fashiontween texture components at different scales is lost. In other
from arbitrarily orientated training samples. The proposed situations, the fegtures are made rotationally invariant with
approach is general enough to be used with a large category"@SPect to a dominant direction only.
of orientation-selective texture features. The second approach to analyzing texture in a rotation-
ally invariant way is to incorporate the rotational invariance
into the learning or classification stage. The proposed tech-
1. Introduction nique falls into this category. These approaches typically
use spatial proximity as one of the criteria for grouping re-

The human visual system is adept at recognizing commonlaFed textures_, andz therefore, are not appropriate f(_)r mod-
spatial patterns. It is easy to recognize that the rows Ofellng_objects in which the same pattern occurs at different
moored boats and water are the common patterns in aeriaiocat'ons'

images of harbors, and then use this knowledge to discover The proposed approach is novel in that it 1) considers
other harbor-like regions. Automating this, however, is not texture orientation, 2) preserves correspondence between
easy. Texture features can be used to characterize the spatifffe orientation at different scales, 3) incorporates rotation
patterns. But most objects for which a texture-based model-invariance into the clustering step, and 4) is appropriate for
ing approach is appropriate 1) do not have identifiable ori- modeling objects composed of differently located and ori-
entations, and 2) contain patterns that do not always occurentated patches.

at the same orientation. As a result, the texture features cor- The proposed approach achieves orientation invariance
responding to the common patterns will not be clustered in using methods similar to those used in [7] to group image
the feature space. This represents a significant challenge. and video frames that have undergone global transforma-

This work introducesiormalized texture motif@ novel ~ tions, such as translation. The proposed approach instead
solution to the problem of using texture features for statisti- Uses the techniques to compensate for the effectsidhat
cal object modeling. The proposed framework has two ma- cal transformationave on deature spaceThe proposed
jor benefits. First, only one orientation of each spatial pat- aPproach also addresses a different problem, that of using
tern is characterized. This greatly simplifies the model. The texture to model complex objects.
second benefit is that no constraints are placed on the train-
ing images. An unsupervised learning algorithm is used to
estimate the model parameters from training sets that need. Image Texture Features
not contain all orientations of a spatial pattern. These ad-
vantages follow from a key insight into the structure of tex- The proposed approach assumes that texture feature vectors
ture features extracted using scale- and orientation-selectiveextracted using spatial filters tuned to combinationsRof
filtering. orientations and scales are used to characterize the spatial
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patterns: 4.1. Statistical Modeling via GMMs

The feature vectors corresponding to a texture motif are as-
" = [(2fy, 2y, ., 2Ys), (251, 25y, - - -, T5g), sumed to have a Gaussian distribution in & dimen-
cey (@ e, 2R 1) sional texture feature space. The conditional probability a
feature vector, given that it is generated by texture motif
Here, element™, represents the output at pixel location  Jj, is thus

of the filter tuned to orientation and scales. Parentheses ) 1 )T, ()

are used to group the filter outputs by orientation for clar- p(zlj) = W e’ v ! 4)
ity. A typical filter bank consists of filters tuned &80/R T %3]

degree intervals. whered = RS. The density for motifj is completely spec-

Fundamental to the proposed approach is the fact thatfied by the parameterg.;, ;), wherey; is the mean vec-

even though these texture features are orientation selectivel®” @nd>:; is the covariance matrix. The density of an en-
they can be used to enable rotation invariant applications.Semble ot/ texture motifs is consequently modeled using a

Rotation invariant similarity retrieval is possible, for exam- Gaussian Mixture Model (GMM), so that the unconditional
ple, by using a modified distance function probability of a feature vectar, with respect to an ensem-
ble of motifs, can be computed as

dRI(x1’m2) :minHm1<T> _xQHQ (2) d
ref p(x)=>_ P(j)p(lj) ®)
wherez” .. represents:, circularly shifted byr orienta- =t
tions: whereP (j) is the prior probability of motifi andp (z|5) is
the conditional probability. The model for an ensemble of
zl, = A3) J motifs is completely specified by the parameters
(@, @l ), (T 1)1 Ty 1)z Ter1)s): ©={0;=(P3),pj,%;)|j=1...J}. (6)
"o (:E%h x%% T 7xrll?,5)’ (1'71117‘%7112’ T vx;’lLS)v
) v(I?r—l)lvx?r—l)Qv"' ,LT?T_US)] .

4.2. Unsupervised Learning via the EM Algo-

Conceptually, this distance function computes the best rithm

match between rotated versions of the images. The Expectation Maximization (EM) algorithm [8] is a

common technique for learning the parameters of a sta-
4. Texture Motifs tlst|c_:al mode_l from an unla\_beled_ training set. It is an |t-_
erative learning technique in which the observable data is
augmented by the missing elements needed to estimate the

tial pattern common to a class of objectsThe pattern values of the model paramgters. The missing elements for
can occur at different locations and orientations within the GMMs are the mixture assignments of the feature vectors,

objects. Examples of texture motifs include the rows of # € /. Estimating the parameter valug;|j =1...J}
moored boats in aerial images of harbors (as shown in Fig_from the training set is straightforward if these assignments

ure 2(a)) and the rows of trees in aerial images of golf are known (using maximum-likelihood, for example). The

courses. Accurate characterizations of texture motifs can fa-COMplete data for the GMM caseys= (z, z), wherez is
cilitate automated object recognition. However, developing the _observable feature vector ant the unknown mixture
the characterizations is a challenge largely due to the high-2ssignment.

dimensionality of the texture feature spaces. In the pro-  Each iterationm of the EM procedure has two steps.
posed approach, the distribution of the feature vectors corre-FI'St: the current estimates of the parameters are used to
sponding to a texture motif is characterized with a paramet- COMPUte the expected value of the log-likelihood of the
ric statistical model whose parameters are estimated fromcompletg “6‘,'”'”9 data given the observed data where the
unlabeled training samples using an unsupervised learningEXPectation is with respect to the unknown data. Second,
algorithm. The advantages of this approach are 1) prepro- he pa_rameter estimates are updated to maximize this ex-
cessing steps, such as segmentation are not required; 2) tHectation. These two steps are repeated until a stopping
learning phase is completely automated, only requiring un- grltgrlon is met, often related to the rate of change of the
labeled training examples; and 3) the model form is fixed so lIkelinood.

that only the parameter values differ from the model of one ~ FOr the GMM(:;?S?' the current estimates at iteration
class of objects to another. are ©(m — {Gj lj=1... J}; the complete data are

A texture motif is here defined as characteristic spa-



Y = (X,Z) = {(z",2") |n = 1... N}; the observed data 5.1. The Normalized Statistical Model

are X = {z"[n=1...N}; and the unknown data areé  Thg feature vectors corresponding to a single orientation of
Z ={z"[n=1... N}, whereN is the size of the training 4 texture motif, termed the normalized orientation, are now
set. The expected value of the log-likelihood of the training ;5sumed to be Gaussian distributed. The conditional prob-

data is commonly written as ability of a feature vectos, given that it is generated from
texture motifj at orientationr, is thus
Q(06™) = B, [logp(v]0) IX, 0] . () X i
p(lir) = i em#(ren ) Bl w)
The maximization step involves updating the parameter es- (2m)™ " |55

(11)
The orientation- means with respect to the normalized ori-
entation. The term._,.~ corresponds to the vectarcir-
cularly shifted by—r orientations (Eq. 4). Conceptually,
this corresponds to un-rotating the feature vector to the nor-

timates to the values ad that maximize@. Fortunately,
this optimization problem has an analytical solution for the
GMM case, and the updated estimates for the model param
eters are computed as

N malized orientation of the motif.
P (5) = — Z P (jlz™) (8) The density for motif; is still completely specified by
N the parameteréu;, ¥;). The density of an ensemble gf
texture motifs is again modeled using a GMM, but now the
L) _ Zfzle P (jlz™) 2" ©) tjongﬁnedrlggrr;aglzrg??ntgutf); olfS a feature vecteywith respect
! 2521 P (jlzm) ,
M R
and p(@)=_ > plir)PHPr). (12
j=1lr=1

. The orientation of a feature vector is assumed to be indepen-
Zflv:l P (lz™) (x” - u(m“)) (x" — u(.m“)) dent of its motif assignment. All rotations are considered

N ’ - ’ equiprobable:

The k-means clustering algorithm is typically used to ini-
tialize the parameter value®(®).

P(r):%forrzl...R. (13)

The complexity of the model has not increased since an en-
semble ofJ motifs is still completely specified by the pa-

5. Normalized Texture Motifs rameter® = {0, = (P (j),p;,%;)|j=1...J}.

Modeling a motif with a single mixture componentis prob- 52  Normalized Unsupervised Learning

lematic since the feature vectors depend on the orientationThe EM algorithm is again used to estimate the parameters

of the texture. The feature vectors corresponding to one . > -
. ) ) . .~ of the normalized motif model from the unlabeled training
orientation of moored boats might be clustered in the high- o .
sets, but now the missing elements are not only the motif

dimensional feature space, but the feature vectors corre- " . L

. . X . assignment € J of an observation but also itrienta-
sponding to multiple orientations cannot assumed to be. Ation c R with respect to the normalized orientation of
potential solution is to model a motif with multiple compo- Y P

. : ; o the motif. Again, estimating the parameter values would
nents, one for each orientation at which the motif might oc- . . . . . )
. ! . straightforward if the motif assignments and orientations
cur. However, this not only increases the complexity of the

model and the number of parameters that must be learned€"® known. The complete data for each observation is now
but also requires that the training set contain a sufficient Y (@, 2,v). : . .
. . : . For the normalized learning case, the current estimates

number of samples of all possible orientations of the motif. . L m) (m), - _

The major contribution of this paper is a method that @t iterationm are still © = {9]‘ 7= 1""]}'
uses GMMs and the EM algorithm to model texture mo- but the complete data are noW = (X,Z,V) =
tifs without increasing the complexity of the model or the {(z",2",v")|n=1... N} where the unknown data are
number of parameters that must be learnédirthermore, (Z,V) = {(z",v")[n=1...N}. The expected value of
no constraints are placed on the orientations of the motif the log-likelihood of the training data is now computed with
samples in the training sefhis generalization is achieved respect to bott¥ andV':
by exploiting the structure of the texture feature vectors in a
manner inspired by the rotation invariant distance function. @ <@|@(m)) =Ezv [10gP(Y|@) X, 0m| . (14)



Q@ can be expanded as:

Q

(15)

The joint probability of the complete data can be expanded
using Bayes’ rule and the independence ahduv:

p(a",2",v"|O) p(z"[z", 0", 0) P (2",0"0) (16)

p(a"[z", 0", 0) P (2"|©) P (v") .

Thus,@ becomes

J R N
ZZZP (z" =j,0" = r|X,@(m))

r=1n=1
’ {10 p(“Ln|Zn :jvvn =T, @)
+1log P (2" = j|©) +1log P (v =1)} .

Q

Ju

(17)

The maximization step computes the estimate of the param
eters for the next iteration of the algorithm as
O+l — argmax Q (@\9(7")) . (18)
o
Fortunately, this optimization problem also has an analyt-

ical solution, and the updated estimates for the model pa-
rameters are computed as

R N
. 1 0o .
P () = LSS P (27 = = e, 007)
r=1n=1
(19)
R N
>3 P (=gt =rlan, 6 et
(m+1) r=1n=1
K R N ,
S 3 P(zn = jom = rlzn,00m)
r=1n=1
(20)
and
R N
> 3 P (2 =j,om = ran, 00m) AlMED
(m+1) r=1n=1 )T,
N
J R N
> 2 P(2n =g, =rfan,00m)
r=1n=1
(21)
where
T
m+1 n m+1 n m+1
e [
(22)

The initial estimate of the parameter valu@s’ is com-
puted using a modified k-means clustering algorithm in

4

which 1) the Euclidean distance is replaced with the rota-

tion invariant distance measure, and 2) the best circularly
shifted versions of cluster members are used to update the
cluster centroids.

6. Experimental Results

The proposed technique for modeling objects composed of
multiple spatial patterns is compared to two alternate meth-
ods, using both synthetic and real datasets.

6.1. The Four Methods

Method 1is the proposed modeling and learning technique,
normalized texture motifs.

Method 2 uses GMMs and the EM algorithm to model
the motifswithout accounting for the texture orientation
This corresponds the method described in Section 4. This
method is expected to have difficulty using a single mix-
ture component to represent all orientations at which a motif
might occur.

Method 3includes a pre-processing step in which each fea-
ture vector is circularly shifted in an independent fashion

so that its maximum average energy is at orientation 0 (the
average is taken over the scales). This is a common ap-
proach that results in the feature vectors being rotationally
invariant, at least with respect to the dominant orientation,
if one exists. GMMs and the EM algorithm are then used
to model the distribution of the shifted features. While this
pre-processing should result in marempactfeature clus-
ters, this grouping might not be as perceptually satisfying
as the one produced by the proposed approach since it con-
siders all the features.

Texture feature vectors are extracted using a bank of Ga-
bor filters tuned takR=6 orientations an®=>5 scales. Note,
however, that the proposed approach is general enough to
use any descriptor characterized by scale- and orientation-
selective filtering.

6.2. The Datasets

The three methods are used to model the texture mo-
tifs in synthetic images created using the Brodatz texture
dataset [9]. Five images are created for each pair of textures
by placing randomly sized and oriented patches of one of
the textures on a background composed of the another tex-
ture, also at random orientations.

The three methods are also used to model the texture mo-
tifs in a set of five aerial images of harbor regions. Harbors
are one example of the kinds of objects appearing in remote
sensed imagery that consist of spatial patterns at various,
disconnected orientations. Some other examples include
golf courses, mobile home parks, and vineyards.



6.3. The Models and Measures is shown to be preserved. Such information might be useful
One way to evaluate a model is to observe how well it clas- if, for example, the relative orientations of the motifs were
sifies a novel instance of an object. We do this here usingfound to be an important characteristic of an object. The
a leave-one-out approach in which the model is trained cmresults shown here for harbor regions are similar to those
all but one of the images in a set, and then used to classifyProduced for other objects, such as mobile home parks and
the remaining, test image. In particular, the learned model 90! courses.

is used to assign a motif label to each pixel in the testimage

using a maximum a priori (MAP) classifier: 7. Conclusion
motif = arg max P (j|z) . (23) This work presents normalized texture motifs, a novel ap-
1<5<J

proach to learning the spatial patterns common to a set of
The models learned using the proposed approach can alsebjects. Rotation invariance is incorporated into an unsu-
be used to estimate the orientation of the texture at eachpervised learning algorithm by exploiting the properties of

pixel, again using a MAP classifier: texture descriptors characterized by scale- and orientation-
orientation— arg max P (r|z) . (24) sglectlve filtering. The method is appropriate for use with a
1<r<R wide range of texture features, such as those extracted using

The images in the simulated dataset are modeled usingGaborfllters. Experimental results show normalized texture

GMMs with two mixture components. The number of com- motifs outperform alternate approaches for both synthetic

ponents in the GMMs used to model the real images is man-and real Images. . .
. . .. Future work includes using a similar approach to account
ually chosen. We have had some success in using a mini-

d o L icallv ch h q Ifor variations in scale. This would allow the models to be
mum gescription criterion to automatically chose the mode independent, within limits, of the resolution of the images.

or_der but this challenging problem is beyond the scope of p single model could be used, for example, to recognize

this paper. harbors in remote sensed images with different, and, possi-
bly unknown, spatial resolutions.

6.4. Classification Results

Figure 1(b) shows the MAP motif assignments for the syn- References

thetic image in Figure 1(a) using the proposed approach.

Note that the two textures are consistently labeled, regard-1] c. Schmid. Constructing models for content-based image re-
less of their orientations. Figure 1(c) shows the assign- trieval. InCVPR volume 2, pages 39-45, 2001.

mgnts using method 2, which does n,Ot account for orien- 2] L. Wang and G. Healey. Using Zernike moments for the illu-
tation. Note that the two textures are incorrectly labeled as™ * yination and geometry invariant classification of multispec-
the same motif. These results are similar to those for other  rg) texture.IEEE Trans. on IP7(2):196-203, 1998.

texture pairs. Co : o
. . . . [3] M. Pietikainen, T. Ojala, and Z. Xu. Rotation-invariant texture
Figure 1(d) shows the MAP orientation assignments us- classification using feature distributiorizattern Recognition

ing tr_]e proposed .ap_proach. Note that the.assignments are  33(1):43-52, 2000.
consistent both within and between the uniformly textured
regions. Figure 1(e) shows the orientation assignments tha{4]
result from the pre-processing in method 3. Note that the
assignments are not always consistent within the uniformly
textured regions. This is because the orientation of thel® > T s < X
texture at each pixel is estimated independently, without sification using modified Gabor filters. WCIP, volume 1,
knowledge of the other pixels in the image. pages 262-265, 1995.

Figure 2(b) shows the motif assignments for the har- [6] M. M. Leung and A. M. Peterson. Scale and rotation invari-
bor image in Figure 2(a) using method 2, which does not ant texture classification. IEEEE Asilomar Conf. on Signals,
account for orientation. Note that moored boats at dif-  SYystemsand Computemlume 1, pages 461-465, 1992.
ferent orientations are incorrectly labeled as different mo- [7] B. J. Frey and N. Jojic. Transformation-invariant clustering
tifs. Compare this with Figure 3(a) which shows the motif using the EM algorithmlEEE Trans. on Pattern Analysis and
assignments using the proposed approach. Different mo- Machine Intelligencg25(1):1-17, 2003.
tif labels are now assigned to the different densities of the [8] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum like-
boats rather than the different orientations. This labeling  lihood estimation from incomplete data via the EM algorithm.
is more reasonable from a perceptual standpoint. Finally, J. of the Royal Statistical Socie§9(1):1-38, 1977.

Figure 3(b) shows the orientation assignments for the pro-[9] P. Brodatz. Textures: A Photographic Album for Artists and
posed approach. Knowledge of the orientation of the motifs ~ Designers Dover, New York, U.S.A., 1966.

H. Greenspan, S. Belongie, R. Goodman, and P. Perona. Ro-
tation invariant texture recognition using a steerable pyramid.
In ICPR, volume 2, pages 162-167, 1994.

] G.Haley and B. S. Manjunath. Rotation-invariant texture clas-



S—— ~
e
2

o

Motif: 1 2 Motif: 1 2 Orientation: 1 2 3 4 5 6
(] HEN [] kN EN BN |
~ - TS

7
it Wi zZzZ2
,,nl;yb,v,n,r e
g
i
Pt

117
il

2
7

=
N

S

S

X
N

S
R
S
N
s

X

R

D
N

S

R

R
RN
NN

ff
i
il
7

R

S
N
\\\‘i

R

R

D

i

(© (d)

Figure 1: (a) An example image from the synthetic dataset. (b) Motif assignments using the proposed approach. The twc
textures are consistently labeled, regardless of their orientation. (c) Motif assignments using an alternate approach (methc
2). The different textures are incorrectly labeled as the same motif. (d) Orientation assignments using the proposed approac
The assignments are consistent both within and between the uniformly textured regions. (e) Orientation assignments using ¢
alternate approach (method 3). The assignments are not consistent within the uniformly textured regions since the orientatio
of each pixel is estimated independently, without knowledge of the other pixels.

Motif: 1 B 2
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Figure 2: (a) An example of a harbor. (b) Motif assignment using an approach that does not account for orientation (methoc
2). The moored boats at different orientations are incorrectly labeled as different motifs.

[EEr Y f‘:—IiE"‘.' ;
ﬁ e .bh -

I e 4. g}
TR [
h.,.-"_":-'-:’:;-} [I_-:[_: 'y g

Motif:

| Orientation:
(@) (b)

Figure 3: (a) Motif assignment using the proposed approach. The moored boats at different orientations are correctly labele
as the same motif. It is the different densities of boats that are labeled as different motifs. (b) Orientation assignment using
the proposed approach. Knowledge of the orientation of the motifs is preserved.





